
Design Phase Analysis of Software Performance
Using Aspect-Oriented Programming

Daesung Park and Sungwon Kang

Information and Communications University

Munji-ro 119, Yuseoung-gu,
Daejeon, 305-714, Korea

{grayger,kangsw}@icu.ac.kr

ABSTRACT

Apart from functionality, software system may have various non-
functional requirements such as performance, security, reliability
and schedulability. If we can predict how well the system will
meet such requirements at an early phase of software
development, we can significantly save the total development cost
and time. Among non-functional requirements, performance is
commonly required as the essential property of the system being
developed. Therefore in the past, many analysis methods have
been proposed but methods that can be practically performed in
the design phase are rare. In this paper, we propose a simulation-
based design-level performance analysis method based on aspect-
oriented programming. We separate performance models from
design models, and then inject performance requirements into
skeleton code generated from design models. Our method has the
advantages that (1) code for the simulation is generated
automatically or semi-automatically, and (2) it is relatively easy
to modify design models or performance models independently
when they are changed.

Keywords

Performance analysis, Design stage software analysis, Aspect-
oriented programming

1. INTRODUCTION
Software architecture and design are the artifacts that are
produced early in the development process and reflect the early
solution decisions for the given software requirements. They
should be carefully designed because later discovery and fixing of
problems would result in much higher cost of development.
Performance is one of the most commonly required qualities and,
in the past, various analysis methods were proposed for it but
most of them have been rarely practiced in industry. It is because
they require additional tasks such as modeling, implementation,
evaluation, and so forth in order to perform analysis. We need
more practical methods that reduce analysis overhead and can fill
the gap between modeling and implementation.

This paper suggests a new method for the design phase
performance analysis based on Aspect-Oriented Programming
(AOP). AOP is a programming paradigm that realizes the
principle of separation of concerns and lets the programmer focus
on various aspects one at a time. When designing and
implementing a software system, we usually modularize the
system into small units such as objects, modules, procedures, and

so forth. Decisions based on the separation of concerns principle
tend to be confined to functionalities. Some non-functional
aspects such as synchronization, component interaction,
persistency or security control are hard to localize cleanly and
hence generally are implemented as lines of code scattered over
many software units. This is particularly so with the performance
aspect. AOP helps modularization of software by allowing us to
express various aspects independently from functionality and
from other aspects. In particular, AOP enables us to model and
analyze the performance aspect of a software system in the design
phase as we will show in this paper.

 The rest of the paper is organized as follows: Section 2
introduces current performance analysis methodologies, the UML
performance profile and AOP. Section 3 presents our performance
analysis approach from the aspect-oriented point of view and
compares it with the traditional approach. In Section 4, we
illustrate our approach by showing the modeling,
implementation, simulation and resulting feedback of a
case study application. Finally, Section 5 is the conclusion and
outlines the future work.

2. RELATED WORKS
2.1 Software Performance Engineering
Software Performance Engineering (SPE) is a systematic,
quantitative approach to develop a software system that meets
performance requirements [3]. SPE pioneered model-based
prediction of software performance. It evaluates the software
system considering not only the relationship between tasks and
resources but also resource requirements per each execution step
of the whole system.

The SPE process [2] is well suited to Unified Process. For each
use case, the key performance scenario, which is represented with
augmented sequence diagrams, corresponds to a workload. The
scenarios are represented by an execution graph. SPE uses two
models: the software execution model and the system execution
model. The software execution model represents key aspects of
the software execution behavior. While the software execution
model captures the resource requirements of the software alone,
the system execution model is a more sophisticated model that
captures workloads, multiple users or delays due to contention for
resources. Like our approach to be presented later, SPE captures
key performance scenarios and decomposes them into execution
steps, and then describes the steps with appropriate performance
models.

Figure 2-1. The performance analysis domain model [13]

2.2 Performance Analysis Techniques
In the early stage of development, for software performance
analysis we have to use models that capture dynamic
characteristics of the system because the phase has no concrete
implementations. The paper [15] reviews various model-based
software performance analysis methods in requirement
specification, software architecture, and design phase. It classifies
software performance analysis models into software dynamics
specification models and performance models. Automata, process
algebra, Petri-nets, message sequence charts, UML diagrams, and
use case map are software dynamics specification models which
describe the behavior of a software system. Markov processes,
Queuing networks, stochastic timed Petri nets, stochastic process
algebras, and simulation models are performance models which
quantify the performance of system.

In our approach of this paper, we use annotated sequence
diagrams for a software dynamics specification model and a
simulation model for a performance model.

2.3 UML Performance Profile
The UML performance profile [13] specifies software execution
parameters which can be used in performance analysis. Figure 2-1
shows main classes and their relationships in the performance
analysis domain model. Main classes consist of workload,
scenario, resource, step and so forth. The scenario defines system
execution path, and has QoS requirements such as response time
or throughput. The workload specifies the intensity of demand for
the execution of a specific scenario. The resource is classified into
a processing resource and a passive resource. The processing
resource is a device (e.g., processor, interface device, storage
device) that has processing steps. The passive resource is
protected by an access mechanism such as a semaphore.

Even though the performance model based on class diagrams can
specify performance attributes effectively, it addresses only static

information about performance. AOP can capture dynamic
aspects of a system using join point, pointcut and advice.

2.4 Aspect-Oriented Programming
In traditional programming paradigms, some design concerns
such as synchronization, component interaction, persistency or
security control tend to be expressed scattered and tangled across
the system code. AOP [7] enables modular implementation of
crosscutting concerns. By using it, software qualities including
performance can be modularized as separate modules. We use
AspectJ, a general-purpose AOP extension to Java, to build an
executable for a simulation.

AOP
AOP enables us to decompose problems into not only functional
components but also aspects which crosscut functional
components, and then implement them by composing these
components and aspects. In AOP, an aspect weaver is a code
generator that is in charge of the composing. The paper [7] shows
the benefits of AOP with the example of an image processor
program. The paper finds the tradeoff between understandable
code and optimized code in memory usage. By using AOP, they
can achieve both understandability and efficiency in memory
usage.

AspectJ
AspectJ [6] is a language that extends Java to support AOP. It has
new concepts such as join point, pointcut, advice, and aspect. Join
point is an identifiable point of program execution such as
method/constructor calls, method/constructor execution, field get
and set, exception handler execution, and static and dynamic
initialization. Pointcut is a set of join points selected by a Boolean
operation such as “and” or “or”. Advice is used to define
additional code to be executed before, after, or around join points.
Aspect is a modular unit of crosscutting implementation. The

AspectJ compiler merges Java code with AspectJ code to achieve
the weaving of crosscutting concerns. Current IDE tools that
support AspectJ enable us to edit, compile, and debug Java code
with AspectJ code.

Aspects for quality Attributes
Software qualities are desired attributes of software system such
as performance, reliability, modifiability and reusability. Software
requirement specifications describe different software qualities in
different ways. In addition, software qualities have different
models, tools, or metrics for analysis. For example, Markov

model was used for reliability analysis, and Wright [14] was used
for deadlock checking. However they were intermingled in the
implementation phase because functionality was the only factor
for modularization. Actually, it is difficult to set qualities apart
from functionalities in the design phase. As the paper [12]
indicates, systematic design methods and solution catalogues are
not sufficient. While AOP is successful in modularizing code
views with the help of tools such as AspectJ, researches on design
modularization ([8], [9], [11], [12]) are on going. This paper
handles how to modularize the performance concern in the design
phase and how to implement it with AOP techniques.

Java Executable

Java Implementation.
of Software Design

Java Executable

Java Implementation.
of Performance Model

manual manual

Weaving and

Compilation

Java Implementation.
(tangled code)

manual

Software
Design
Model

Performance
model

Software
Design Model
Integrated with
Performance
Model

(A) Conventional Approach (B) Our Approach

Compilation

System
Analysis

System
Analysis

Redesign
Redesign

Figure 3-1. Our approach compared with the conventional one

3. OUR APPROACH
In this section we explain our approach to a design phase analysis
of software performance. Figure 3-1(A) shows the conventional
approach. In Figure 3-1(A), software design includes both a
functional design and a performance model and therefore code for
the design model and code for the performance model get mixed
together when they are implemented. It is assumed that we
manually obtain code from the design model. Then the source
code is compiled, executed and analyzed. If necessary, the system
is redesigned and the whole process is repeated. The
disadvantages of the conventional approaches are that (1) it is
difficult to develop the design model because the designer should
consider both the software design and the performance model at
the same time, and (2) it is difficult to understand and maintain
the program code because several concerns are intermingled in
the implementation code.

Our approach in Figure 3-1(B) solves these problems. In the
design phase, we clearly set the performance model apart from the
design model and maintain the separation to the implementation

phase. In other words, the design model has its own Java
implementation code, and the performance model has its own
AspectJ implementation. Later these two are woven together
using the AspectJ compiler.

The approach of Figure 3-1(B) has many advantages over the
conventional approach. Each of the design model and the
performance model is transformed into the corresponding code
clearly. Even though feedback may induce redesign of either the
design model or the performance model, direct code generation
speeds up the development cycle. Strict modularization in the
implemented code enhances understandability and
maintainability. We don't have to take the trouble to integrate the
separated source code files for ourselves because it can be
automatically done by the AspectJ compiler.

3.1 Design model
The UML [5] provides elaborate notations required for
documenting requirement, architecture, design and so forth.
Design of software system was usually modeled with class
diagrams and sequence diagrams.

Performance analysis starts from constructing a design model
based on system's functionalities. To make class diagrams, we
extract main objects and their operations which are likely to affect
performance critically. It is easy to generate program code from
class diagrams. Several tools such as Rational Rose® can generate
class, attribute, signature of operation, and relationship from class
diagrams.

A sequence diagram can show the order of operations being
executed. It is lacking in expressing timing information such as
start time or end time of an operation and the duration of the
operation. That means that as such it is not adequate for
performance analysis. We show that aspect oriented mechanism
can fill a gap in the sequence diagram by inserting time
constraints to the section of AspectJ code that corresponds to
operations of the sequence diagram.

3.2 Performance Model
A model should represent behaviors of system and performance
requirements in static and dynamic ways, and provide appropriate
format that can be easily utilized for the analysis phase1.

We use XML, the flexible and extensible text format, to represent
the performance model2. XML, originally designed to interchange
documents over different application programs, is appropriate to
be used in exchange performance-related data between modeling
and simulation. XML can store not only content of data but also
their structure. Moreover it is intuitive for a person to read and
write data, and easy for computer to manipulate data (e.g., store,
update, parse, or delete) in the programming by using DOM
(Document Object Model) or SAX (Simple API for XML).

Figure 3-2. UML performance profile in XML format

For a simulation, we transform the performance model in Figure
2-1 to the XML format. Figure 3-2 shows the XML schema
corresponding to the performance model. Each class in the model
is mapped to an element in the XML schema and attributes of the
class are mapped to the attributes of the element in XML. As
performance context class in the model aggregates workload,
scenario, and resource class, the performance context node in
XML format has three child nodes: workload, scenario, and
resource. The input of the simulation is a valid XML file
containing actual performance parameters originating from the
UML performance profile. The output of the simulation, response

1 In order to describe performance information for the analysis tool, the [1]

introduces PMIF (Performance Model Interchange Format). However it
is lacking in generality due to its special purpose.

2 The papers [4] and [10] also try to map the UML performance profile to
the XML format.

time or throughput, is also stored in the XML sharing the same
schema. Table 3-1 explains performance parameters appeared to
attributes of the XML nodes.

Table 3-1. Performance parameters [13]

Node Attribute Explanation

Workload population
the size of the workload (number of
system users).

Scenario

response
time

the total time required to execute the
scenario, including all resource
waiting, synchronization delays and
execution times.

response
time

the total delay to execute the step
including all resource waiting and all
execution times.

Step
interval

the time interval between successive
repetitions of this step, when it is
repeated within a scenario.

capacity the number of permissible concurrent
users.

Resource throughput the rate at which the resource performs
its function.

4. APPLICATION EXAMPLE
In this section, we demonstrate our approach using a case study,
namely a map viewer system. The map viewer system is a
web-based application that allows users to view a detailed
map of a location. When users select the area that they want to
see, the map viewer system finds the information of the area and
then shows the map image on the web. The system consists of
three tiers: Presentation, Business logic, and Data manager. The
sequential steps of “showing map image” scenario are as below;

(1) Presentation tier gets input from users and requests a map
image to Business logic.

(2) Business logic tier queries map data to Data manager tier.
(3) Data manager tier finds map data and returns it to Business

logic tier.
(4) Business logic tier makes a map image from map data and

returns it to Presentation tier.
(5) Presentation tier draws the map image and shows it to users.
For the sake of simplicity, this scenario considers neither
branching nor alternative flow.

4.1 Functionality concern
As we mentioned, class diagrams and sequence diagrams describe
the functionality of a system. Figure 4-1 shows objects and their
operations, and Figure 4-2 shows the caller and the callee of
operations and the sequence of these operations. These can be
translated to Java code as in Table 4-1.

Figure 4-1. Class diagram

Figure 4-2. Sequence diagram

Table 4-1. Java code for functionality

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

public class Presentation {
 BusinessLogic bl;
 public void showImage() {
 bl.getImage();
 drawImage();
 }
 public void drawImage() {
 }
}

public class BusinessLogic {
 Presentation pre;
 DataManager dm;
 public void getImage() {
 dm.getMapData();
 makeImage();
 }
 public void makeImage() {
 }
}

public class DataManager {
 BusinessLogic bl;
 public void getMapData() {
 findMapData();
 }
 public void findMapData() {
 }
}

Except for the implementation lines of code (lines 4, 5, 15, 16,
25) of each operation, lines of skeleton code can be generated
from class diagrams automatically [16]. The implementation of
each operation is manually written from sequence diagrams
straightforwardly. Later, the operations in classes will be the join
points of AspectJ code reflecting performance characteristics and
will be used to describe the behaviors of execution steps.

4.2 Performance concern
As we mentioned in Section 3, the performance concern is
represented in the XML format that captures the UML
performance profile. As the functionality concern is implemented
in Java language, the performance concern is also implemented in
Java language. We simulate dynamic behavior of the system with
the executable compiled from functionality-based skeleton code
and the performance model implementation.

The workloads are generated with Java threads. The number of
threads is the same as the population of workloads, or
Workload.population in Table 4-2. Each thread tries to obtain
resources to execute the given operation. However, each resource
has limited capacity, or Resource.capacity. When a thread
representing a workload fails to obtain the resource, it waits for an
instance and retries to do. Step.interval represents the interval
between trials. If the thread succeeds in obtaining the resource, it
executes the operation for Step.responseTime. The consumed time
for execution is emulated using the sleep() method of
java.lang.Thread class.

4.3 Weaving
The functionality concern and the performance concern are
weaved by the AspectJ compiler. Figure 4-3 shows sequence
diagrams overlaid with AspectJ elements. Lines of Code for
performance analysis are inserted before or after appropriate
pointcuts.

With regard to the UML performance profile, sequence diagrams
represent the scenario. Objects in the sequence diagrams can
represent resources required for workloads. Methods or messages
in the sequence diagrams represent steps of the scenario.

4.4 Simulation
In this section, we show how to calculate performance metrics
using the simulation and how to apply the AOP techniques for
checking timing information of operations and counting the
number of service completions.

Figure 4-3. Sequence diagram with pointcuts and advices

Table 4-2. Input and output of the simulation
Input Output

Step.responseTime
Step.interval
Resource.capacity
Workload.population

Resource.throughput
Scenario.responseTime

The purpose of the simulation is to get the response time of the
scenario and the throughput of resource from performance
parameters of step, resource, and workload. We can get the
response time of scenario, or Scenario.responseTime using join
points, pointcuts, and advices of AOP.

Table 4-3. Join points, pointcut, and advices

<J-1> Presentation.showImage() ;
<J-2> BusinessLogic.getImage();
<J-3> DataManager.getMapData() ;
<P-1> pointcut pShowImage() :
 execution(* Presentation.showImage(..));
<A-1> before() : pShowImage();
<A-2> after() returning : pShowImage();

In Table 4-3, the lines <J-1>, <J-2>, <J-3> are the operations that
appeared in the functionality implementation. The line <P-1> is
the pointcut appeared in the performance implementation. When
<J-1> calls <J-2>, <J-2> calls <J-3>. The response time of
scenario is the time taken to execute <J-1>. To get the response
time, time checking should be done in before/after the pointcut
<P-1> corresponding to <J-1>. The advices <A-1> and <A-2>
mean the very time before <P-1> is executed and the very time
after <P-1> is returned respectively. Therefore, we can get the
response time by subtracting the moment of <A-1> from the
moment of <A-2> because the difference is the elapsed time
executing the operation step.

To get the throughput of the resource, or Resource.throughput, we
use a simple formula. Let T be the length of time in the
observation period, and let C be total number of service
completions in the observation period. Then the throughput of
system is C divided by T. We can get T by observing simulation
run time and can get C by setting counters before or after
appropriate pointcuts.

4.5 Feedback
In performance analysis process, feedback means redesign of
software architecture or reorganization of resource demands when
analysis result does not meet requirements. The Feedback (1) of
Figure 4-4 stands for modification of the software architecture or
design. We can add new components for load balancing or can
modify relationships between components.

The Feedback (2) of Figure 4-4 means modification of
performance parameters. For example, when the result of
performance analysis is worse than expected, we can increase the
capacity of the resources. On the other hand, when the result is
better than expected, we can increase the workload. That can be
applied to enhance scalability of the system.

Initially, performance parameters used in simulation input are
usually predicted values or assumed values. Through the feedback,
simulation results can be used as input, therefore it makes the
performance prediction more precise.

As Figure 4-4 shows, the Feedback (1) and the Feedback (2) are
independent of each other because the model and implementation
for the performance concern are separated from those for the
functionality concern. Modification of the design or code for the
functionality concern will hardly influence that for the
performance concern, and vice versa. Therefore, our approach
enables us to minimize the coupling between functionality-related
modules (i.e., Presentation.java, BusinessLogic.java, and
DataManager.java) and performance-related module (i.e.,
Perf_Aspect.java) in Figure 4-4.

Figure 4-4. Feedback process applying the separation of concerns principal

Presentation.java
BusinessLogic.java
DataManager.java

Java executable

Perf_Aspect.java

Weaving

Simulation

Feedback (2)

Performance concern Functionality concern

Feedback (1)

5. CONCLUSIONS
We proposed a performance analysis method for the design phase
using AOP. We also demonstrated the analysis process using an
application example. The benefits of our method are as follows:

Firstly, it minimizes analysis overhead. Analysis using the
simulation requires the working executable solely for the
simulation purpose. Designing the model and building the
executable from the model puts a lot of overhead on the software
development process. We showed how we can separate the
performance model from the design model. In our method, each
isolated model can be easily transformed to the implementation in
Java or AspectJ language and these two implementations are
automatically integrated by the AspectJ compiler.

Secondly, it allows rapid feedback. Feedback can result in
modification of design or performance requirements and even
rewriting of the implementation code for the simulation. If we just
have tangled code, we have to undergo the process of untangling,
modifying, and re-tangling whenever a change is made regardless
of how small the change may be. That makes feedback process
slow and expensive. Well modularized code as our approach
produces would enable rapid feedback.

Thirdly, it fits well into the modern software development process
where design is often expressed predominantly with sequence
diagrams and class diagrams, which are the basis for our analysis
method. Our analysis method does not require learning complex,
special purpose models, notations, or tools. Our choice, AspectJ,
is the simple extension to Java and is not specific to any quality
analysis.

In this paper, we showed that AOP can be applied to the
simulation-based analysis in the design phase. We will expand the
work to analysis of other software qualities such as reliability,
security, deadlock freedom and so on.

6. REFERENCES
[1] C. U. Smith and L. Williams, “A Performance Model

Interchange Format,” Journal of Systems and Software, Vol.
49, No. 1, 1999.

[2] C. U. Smith and L. Williams, Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
Addison-Wesley, 2002.

[3] C. U. Smith, Performance Engineering of Software Systems,
Addison-Wesley Longman Publishing Co., Inc., 1990.

[4] G. P. Gu and D. C. Petriu, “Early Evaluation of Software
Performance based on the UML Performance Profile,” Proc.
2003 Conf. of the Centre for Advanced Studies Conf. on
Collaborative research, Toronto, Ontario, Canada, pp. 66 –
79, 2003.

[5] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language user guide, Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, 1999.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An Overview of AspectJ,” Proc. of the
15th European Conf. on Object-Oriented Programming,
pp.327-353, June 18-22, 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, et. al., “Aspect-Oriented Programming,” Proc.
ECOOP, Springer-Verlag, 1997.

[8] J. Gray, T. Bapty , S. Neema, D. C. Schmidt, A. Gokhale,
and B. Natarajan, “An Approach for Supporting Apect-
Oriented Domain Modeling,” Proc. 2nd Int’l Conf. on
Generative programming and component engineering,
pp.151-168, Erfurt, Germany, Sept. 22-25, 2003.

[9] J. Suzuki and Y. Yamamoto, “Extending UML with Aspects:
Aspect Support in the Design Phase,” Proc. Workshop on
OO Technology, pp.299-300, 1999.

[10] L. B. Arief and N. A. Speirs, “A UML Tool for an
Automatic Generation of Simulation Programs,” Proc. 2nd
Int,l Workshop on Software and Performance, pp.71-76,
Ottawa, Ontario, Canada, Sept. 2000.

[11] M. Katara and S. Katz, “Architectural Views of Aspects,”
Proc. 2nd Int’l Conf. on Aspect-oriented software
development, pp.1-10, March 17-21, 2003

[12] N. Noda and T. Kishi, “On Aspect-Oriented Design: An
Approach to Designing Quality Attributes”, APSEC 1999.

[13] Object Management Group, “UML Profile for
Schedulability, Performance, and Time Specification,” OMG
Adopted Specification Version 1.0, formal/03-09-01, Sept.
2003.

[14] R. Allen and D. Garlan, “A Formal Basis For Architectural
Connection,”, A revised version of the paper that appeared in
ACM Trans. on Software Engineering and Methodology,
July 1997.

[15] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni,
“Model-based Performance Prediction in Software
Development: A Survey,” IEEE Trans. SE, Vol.30, No.5,
May 2004.

[16] W. Harrison, C. Barton, and M. Raghavachari, “Mapping
UML Designs to Java,” Proc. Conf. on Object-Oriented
programming, systems, languages, and applications, pp.178-
187, Oct. 2000.

